CNC車床高斯曲線加工
隨著新產品研製的發展,許多新產品的形狀采(cǎi)用了特(tè)殊曲線,如橢圓、雙曲線和高斯曲(qǔ)線等,而如何加工這些特殊曲線就成了機(jī)加人員的(de)新(xīn)課題。
從多年的實踐來看,采用宏程序編(biān)程,然後在數控(kòng)車床上車削是較為簡單、經濟和方便的一種方(fāng)法。
但是這種方法(fǎ)對於編程者要求較高,這是(shì)因為宏程(chéng)序的編(biān)製(zhì)要求程序員不(bú)僅(jǐn)具(jù)有豐富的數學知識,還(hái)要熟悉數控車床的編程指(zhǐ)令,對於宏程序(xù)更(gèng)應是了如指掌。
宏程序分為A類和B類兩種:A類宏程序通常采用H代碼(mǎ)編製,B類宏程序通常用賦值語句和數學公式進行編(biān)製,易為大家(jiā)接受,FANUC0i型數控(kòng)係統的宏程序就是B類。
▽長(zhǎng)按愛(ài)心,添加小編,技術交流▽
一、FANUC0i型數控係統宏程序
在FANUC0i型(xíng)數控係統中變量分為4種類型(xíng),即空變量、局部變量、公共變(biàn)量和係統變量。空變量的變(biàn)量號為#0,該變量總為空,沒(méi)有值能賦給該(gāi)變量;局部變量(liàng)的變量號為#1~#33,該類變量隻能用於在宏程序中存儲數據,當斷電時局部變量初始化為空(kōng),調用宏程序時,給局部變量賦值。公共變量的變量號(hào)為#100~#199、#500~#999,公(gōng)共變量在不同(tóng)的宏程序中(zhōng)的意義相同。當斷電時(shí),變量#100~#199初始化為空,變量#500~#999中的(de)數據保存,即使斷電也不丟失(shī)。係統變量的變量號為#1000~,係統變量用於讀(dú)和寫CNC的各種數據,例(lì)如刀具的當前位置和刀(dāo)具補償值等。我們在編寫宏程序時可以引用局部變(biàn)量和公共變量,在引用變量,特別是(shì)公共(gòng)變量時,為消除變量內原有數據的影響,一定要給變量重新賦值後再引(yǐn)用。
宏程序是用戶(hù)實現機(jī)床功(gōng)能擴展的一種方法(fǎ)。在宏程序中可以使用變量,給變量賦值,變量間可進行運算(suàn)和程序跳轉。此外,宏程(chéng)序還提供了循環語句、分(fèn)支語句和(hé)子程序調用語句,一層宏循環裏還可以嵌套多層循環。所以(yǐ)可以應用宏(hóng)程序指令編製出簡潔合理的小容量加工程序,擴展(zhǎn)數控機(jī)床功能,提高加工效率,充分發揮數控機床(chuáng)的(de)作用。
二、高斯曲線的方程
高斯曲線在直角坐標係(xì)下的方程是其中x是自變量,y是因變量。但此方程我們還不能直接應用於數控車床,因為在數控車床上,坐標(biāo)係是這樣規
定的:Z軸與主軸軸線平行,正方向是遠離工件方向,X軸與主軸軸線垂直,正方向是(shì)遠離主軸軸線方向。因(yīn)此我們需要把直角坐標係的方程轉換為數控車床坐標係下的方程,同時(shí)數控車床不能識別指數函數和平方等(děng)數學符號,這就需要用宏程序中的算術和邏輯運算符(fú)號替(tì)換其中的數學符號,變成數控車床可識別的公式。
經變換後高斯曲線在(zài)數控(kòng)坐標(biāo)下的方程(chéng)如下。
X=140.6/EXP(((z-620)/1339)*((z-620)/1339))+9.358/
EXP(((z+251.5)/351.8)*((z+251.5)/351.8))+24.58/EXP(((z+740.4)/464.1)*((z+740.4)/464.1))
三、數控車床(chuáng)加(jiā)工特殊曲線的方法
數控車床可通過(guò)G01、G02等G代碼直接加工直線、圓弧,但並沒有專門的G代碼來加工橢圓、雙曲線和(hé)高斯曲線等特(tè)殊曲線。在加工此類曲(qǔ)線時一般(bān)采用直線(xiàn)逼近法,即在Z方向上依次遞減或遞增,以0.05mm~0.5mm為一個步距,每遞減或遞增一個步距得(dé)到一個Z值。然後,通過曲線方程計算求出對應的(de)X值,再將刀具直(zhí)線插補至計算(suàn)得出的(de)(X,Z)值所確定的點,依次插補便可完成特(tè)殊曲線的加工。
四、編(biān)製加工高斯曲線的宏程序
現以一個簡單的零件為例,說明高斯曲線的宏程序編製過程。如圖1所(suǒ)示,在Φ260mm的毛坯棒料上加工一段(duàn)長100mm的高斯曲(qǔ)線外輪廓。圖(tú)1是直角坐標係下的零件圖樣(yàng),圖2是數控坐標下的零件圖樣。
1490873504692141.png1490873504561622.png
在高斯曲線數控坐標方程中,我們用#101表示自變量(liàng)z,用#102表示(z-620)/1339,用#103表示(shì)(z+251.5)/351.8,用#104表示(z+740.4)/464.1,用(yòng)#105表示因變量x,則高斯(sī)曲線的方程可表示為:
#105=14.6/EXP(#102*#102)+9.358/EXP(#103*#103)+24.58/EXP(#104+#104)
編製精加工程序如下:
O0001
N10#101=0;(自(zì)變量初(chū)值)N20#102=(#101-620)/1339;
N30#103=(#101+251.5)/351.8;N40#104=(#101+740.4)/464.1;
N50#105=14.6/EXP(#102*#102)+9.358/EXP(#103*#103)+24.58/EXP(#104*#104);
N60G01X[2*#105]Z[-#101]F0.2;(直線逼近法加(jiā)工高斯曲線)
N70#101=#101+0.1;(z值遞(dì)增一個步距)
N80IF[#101LE100.0]GOTO20;N90G01X265.0;
N90G00X100.0Z100.0;N100M30;
以上程序為最(zuì)後一刀的精加工程序,在實際加工中要考慮到毛坯的餘量,這就需要(yào)先粗車,再精車。粗車同樣也是沿輪廓車削,可采用G71或者G73指令粗車,然後(hòu)用G70指令精車,編製完整的程序如下。
O0002
N10G40G21G97G99;N20M03S800;
N30T0101;
N40G00X262.0Z2.0;N50G73U9.0R9.0;
N60G73P70Q150U0.3W0.0F0.2;N70#101=0;(自(zì)變量初值)
N80#102=(#101-620)/1339;N90#103=(#101+251.5)/351.8;
N100#104=(#101+740.4)/464.1;
N110#105=14.6/EXP(#102*#102)+9.358/EXP(#103*#103)+24.58/EXP(#104*#104);
N120G01X[2*#105]Z[-#101]F0.1S1000;(直線逼近法加工高斯曲線)
N130#101=#101+0.1;(z值遞增一(yī)個步距)N140IF[#101LE100.0]GOTO80;
N150G01X265.0;N160G70P70Q150;
N170G00X100.0Z100.0;N180M30;
雖然隨著CAD/CAM軟件的應用,手工編程(chéng)、宏程序應用空間日趨縮小,但是(shì)在某些情(qíng)況下PC機也無能為力,這就要(yào)求我們深挖手工編程(chéng),發揮數控機床潛力。